	Quiz 2: Chemical Speciation and Thermodynamics	Last Name: A	nswers		
Assigned: 29-Aug-18		First Name:_			
Due: 10-Sep-18			negative enthalpy and Gibbs free energy		
1.	Spontaneous reactions have a positive ΔH .		are spontaneous.		
2.	Spontaneous reactions have what values for Δ G?	Negative			
	Consider the reduction potential data below. For a c ion, which element will be reduced? _Ag	ell with Ag an 	d Cu in the metal and monovalent		
Star	ndard Reduction Potentials (in Volts), 25°C				
Reaction $Ag^+ + e^> Ag$		E ^o	Ag has the highest half cell reduction		
		+0.80	potential Ag is favored to reduce		
Fe ³⁻	$^{+} + e^{-} > Fe^{2+}$	+0.77			
$I_2 +$	$2e^{-} - 2e^{-} > 2I^{-}$	+0.54			
$Cu^+ + e^> Cu$		+0.52	Carbonic acid has a Ka of 3.5E-6, which is a pKa of 6.5, which would		
4.	Carbonic acid would be a good buffer for which pH?	6.5	be a pH of 6.5 as a buffer.		

5. You have a carbonate solid in a solution that you wish to dissolve. It is taking a long time to dissolve the solid. What can be done to increase the rate of dissolution? Choose all that are correct.

Freeze solution	🔳 Mix	solution	🗖 Evapo	orate solution in free:	ze drier	Heat so	lution	
Bubble CO ₂ into solu	ution	on 🔳 Add dilute acid		Solid phase dissolution heating. The addition of acid can		can be increased by mixing or n dissolve carbonates.		

Ken Czerwinski Digitally signed by Ken Czerwinski Date: 2018.09.03 16:00:06 -07'00'

Digital signature